Minkowski Geometric Algebra of Complex Sets

نویسندگان

  • RIDA T. FAROUKI
  • HWAN PYO MOON
  • BAHRAM RAVANI
چکیده

A geometric algebra of point sets in the complex plane is proposed, based on two fundamental operations: Minkowski sums and products. Although the (vector) Minkowski sum is widely known, the Minkowski product of two-dimensional sets (induced by the multiplication rule for complex numbers) has not previously attracted much attention. Many interesting applications, interpretations, and connections arise from the geometric algebra based on these operations. Minkowski products with lines and circles are intimately related to problems of wavefront re£ection or refraction in geometrical optics. The Minkowski algebra is also the natural extension, to complex numbers, of interval-arithmetic methods for monitoring propagationoferrorsor uncertainties in real-numbercomputations.TheMinkowski sumsandproducts offer basic s̀hape operators' for applications such as computer-aided design and mathematical morphology, and may also prove useful in other contexts where complex variables play a fundamental role ^ Fourier analysis, conformal mapping, stability of control systems, etc. Mathematics Subject Classi¢cations (2000). 51M15, 51N20, 53A04, 65D18, 65E05, 65G40.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m-Projections involving Minkowski inverse and range symmetric property in Minkowski space

In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...

متن کامل

Antisymmetric Matrices are Real Bivectors

This paper briefly reviews the conventional method of obtaining the canonical form of an antisymmetric (skewsymmetric, alternating) matrix. Conventionally a vector space over the complex field has to be introduced. After a short introduction to the universal mathematical “language” Geometric Calculus, its fundamentals, i.e. its “grammar” Geometric Algebra (Clifford Algebra) is explained. This l...

متن کامل

Minkowski Algebra I: a Convolution Theory of Closed Convex Sets and Relatively Open Convex Sets∗

This is the first one of a series of papers on Minkowski algebra. One of purposes of this paper is to set up a general framework so that the mixed volume theory and integral geometry can be developed algebraically in subsequent papers. The so called Minkowski algebra of convex sets is the vector space generated by indicator functions of closed convex sets and relatively open convex sets, where ...

متن کامل

On a Brunn-minkowski Theorem for a Geometric Domain Functional Considered by Avhadiev

Suppose two bounded subsets of IR are given. Parametrise the Minkowski combination of these sets by t. The Classical BrunnMinkowski Theorem asserts that the 1/n-th power of the volume of the convex combination is a concave function of t. A Brunn-Minkowski-style theorem is established for another geometric domain functional.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001